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Abstract

Manganese (Mn) is an essential element that is required in trace amount for normal growth, development as well
maintenance of proper function and regulation of numerous cellular and biochemical reactions. Yet, excessive Mn
brain accumulation upon chronic exposure to occupational or environmental sources of this metal may lead to a
neurodegenerative disorder known as manganism, which shares similar symptoms with idiopathic Parkinson’s
disease (PD). In recent years, Mn exposure has gained public health interest for two primary reasons: continuous
increased usage of Mn in various industries, and experimental findings on its toxicity, linking it to a number of
neurological disorders. Since the first report on manganism nearly two centuries ago, there have been substantial
advances in the understanding of mechanisms associated with Mn-induced neurotoxicity. This review will briefly
highlight various aspects of Mn neurotoxicity with a focus on the role of astrocytic glutamate transporters in
triggering its pathophysiology.
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Review
Mn is essential but needs to be in the balance
Mn is a ubiquitous element present naturally in the
environment, including water and food. In the human
body, Mn is found in all tissues where it is required for
normal amino acid, lipid, protein and carbohydrate me-
tabolism, and ATP generation. Mn also participates in
blood clotting and sugar homeostasis, immune respon-
siveness, digestion, reproduction, and bone growth [1-3].
It is a critical component of numerous metalloenzymes,
including Mn superoxide dismutase, arginase, phospho-
enolpyruvate decarboxylase and glutamine synthetase
[4-6], to name a few. Despite its requirement in multiple
physiological processes, elevated levels of Mn trigger
toxicity, particularly within the central nervous system
(CNS), causing cognitive, psychiatric and motor abnor-
malities [7,8]. In humans, Mn deficiency is rare as it is
abundant in diets, but in extenuating conditions it may
contribute to developmental defects, including malfor-
mation of bones, altered macromolecular metabolism,
reduced fertility, weakness and enhanced susceptibility
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to seizures [3,9,10]. Mn deficiency has also been shown
to induce skeletal defects and impaired lipid metabolism
[11,12].
Sources of human exposure
Mn is naturally abundant in the Earth’s crust (0.1%) and
soil (40–900 mg/kg) [13,14]. Mn is found as oxides, car-
bonates and silicates in minerals. The versatile chemical
properties of Mn have expanded its industrial use in
glass, ceramics, paint and adhesive industries, as well as
in welding. The wide usage of Mn in a range of in-
dustries has led to global health concerns. Indeed, oc-
cupational exposures to Mn have been documented in
multiple industries, including ferroalloy smelting, wel-
ding, mining, battery, glass and ceramics [15-19].
The primary source of Mn exposure in the general hu-

man population is from diet, which is estimated to con-
tain 0.9-10 mg Mn per day [20]. Rice, grains and nuts
are rich sources of Mn with excess of 30 mg/kg, while
Mn content in tea is 0.4-1.3 mg/cup. Mn drinking water
levels are in the range of 1–100 μg/L [21]. The high Mn
content in infant formulas compared to human milk,
has recently drawn public attention [22], along with Mn
in parenteral nutrition. The latter is considered a risk
factor for Mn-induced toxicity since the normal intestinal
d. This is an Open Access article distributed under the terms of the Creative
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regulatory mechanisms are bypassed, rendering intra-
venously delivered Mn 100% bioavailable [23,24]. Mn in
fumes, aerosols or suspended particulate matters is depos-
ited in the upper and lower respiratory tract, with subse-
quent entry into the bloodstream. An Mn-containing
gasoline anti-knock additives additive, methylcyclopen-
tadienyl manganese tricarbonyl (MMT), has been intro-
duced in several countries, representing another source of
Mn exposure via inhalation [25,26]. Designer drugs, such
as methcathinone hydrochloride (ephedrine), where potas-
sium permanganate is used as an oxidant for the synthesis
of the illicit drugs [27] has also been shown to cause neu-
rodegenerative sequalae in drug abusers, consistent with
PD-like symptomology.

Mn absorption, transport and excretion
Diet represents the major source of Mn in humans. The
gastrointestinal tract absorbs 1-5% of ingested Mn; 60-
70% of inhaled Mn is exhaled by the lungs [28,29]. The
uptake of Mn is tightly regulated and excess Mn is ex-
creted through the bile [30]. Both active transport and
passive diffusion mechanisms regulate oral Mn absorp-
tion and the process is governed by various factors, in-
cluding dietary levels of Mn and other minerals as well
as age [20,30,31]. Among other metals, iron (Fe) stores
are particularly important given the inverse relationship
between cellular Fe levels and Mn uptake, as evidenced
by increased transport of orally administered Mn in
states of Fe deficiency [32,33]. In blood, Mn+2 is pre-
dominantly (>99%) in the 2+ oxidation state and mainly
bound to β-globulin and albumin. A small fraction of
Mn+3 is complexed with transferrin [34,35]. Mn (in the
2+ oxidation state) transport across the blood–brain
barrier (BBB) and cell membranes is facilitated by the di-
valent metal ion transporter 1 (DMT1), N-methyl-d-as-
partate (NMDA) receptor channel and Zip8 [36-38], to
name a few. Transferrin is the most efficient transport
system for Mn in the 3+ oxidation state [39]. Mn is dis-
tributed throughout the brain and the highest Mn levels
are found in the globus pallidus and other nuclei of the
basal ganglia (striatum, substantia nigra) [40,41]. DMT1
and transferrin also regulate Mn uptake both in astro-
cytes and neurons [42,43]. Generally, the intracellular
Mn concentration is higher in tissues rich in mitochon-
dria and pigmentation. The highest Mn levels are noted
in bone, liver, pancreas and kidney compared to other
tissues [44].

Mn neurotoxicity
Mn in neurological disorders
Chronic inhalation of air-borne Mn particulates repre-
sents the major cause of human neurotoxicity, though
there is growing number of reports on Mn toxicity
resulting from consumption of Mn-adulterated drinking
water [45,46]. Occupational exposures represent the pre-
dominant source of excessive Mn exposure [47]. Manga-
nism, first described by Couper in 1837 [48] is a clinical
disorder characterized by psychological and neurological
abnormalities that shares multiple analogous symptoms
with idiopathic PD [Reviewed in [49]]. The early symp-
toms of manganism include hallucinations, psychoses
and various behavioral disturbances soon followed by
postural instability, dystonia, bradykinesia and rigidity
[50]. Despite their resemblance in clinical features, man-
ganism is clinically distinguishable from PD [51]. Mn-
induced neurotoxicity affects mainly the globus pallidus
as well as the cortex and hypothalamus [52,53], distinct
from the striatal changes associated with PD. Excessive
CNS Mn levels may contribute in the pathogenesis of
PD, causing loss of dopamine in the striatum, death of
non-dopaminergic (DAergic) neurons in the globus pal-
lidus, and damage to glutamatergic and GABAergic pro-
jections [54,55]. Mn has also been shown to increase
fibril formation by α-synuclein along with its expression
and aggregation [53,56,57]. While playing a major role
in the etiology of PD [58], the precise role of α-synuclein
in Mn-induced neurotoxicity has yet to be determined.
A role for Mn has also been advanced in the etiology of
Huntington’s disease, amyotrophic lateral sclerosis and
Alzheimer’s disease [Reviewed in [49]].

Mechanism of Mn Neurotoxicity
Mitochondrial dysfunction
Mitochondria serve as the primary storage site for intra-
cellular Mn where it is taken up by the calcium uni-
porter [59]. Mn is also an important cofactor for various
mitochondrial enzymes and, thus, the elevation in Mn
levels in this organelle can directly interfere with oxida-
tive phosphorylation. Mn inhibits the function of F1-
ATPase and the formation of complex I of the electron
transport chain, thereby interfering with cellular ATP
synthesis [60,61].

Oxidative stress
Elevated intra-mitochondrial Mn levels trigger oxidative
stress, generating the excessive reactive oxygen species
(ROS), causing mitochondrial dysfunction [61,62]. The
transition of Mn+2 to Mn+3 increases its pro-oxidant
capacity [63]. Mn-induced oxidative stress leads to the
opening of mitochondrial transition pore (MTP), re-
sulting in increased solubility to protons, ions and
solutes, loss of the mitochondrial inner membrane po-
tential, impairment of oxidative phosphorylation and
ATP synthesis and mitochondrial swelling [64,65]. Fur-
thermore, Mn exposure has also been linked to the acti-
vation of signaling pathways involved in response to
oxidative stress, including nuclear factor kappa B (NF-kB)
and activator protein-1 (AP-1) [66,67].
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Apoptosis
Neuronal cell death by apoptosis has been considered to
play a major role in neurodegenerative diseases, inclu-
ding PD [68]. Mn has been shown to trigger apoptosis in
DAergic neurons in a caspase-3-dependent manner by
activation of protein kinase C delta (PKC-δ) [69]. Simi-
larly, Mn has been shown to cause apoptotic cell death
in astrocytes by mitochondrial pathways involving cyto-
chrome c release and caspase activation [64,70].

Inflammation
Although the oxidative stress induced by mitochondrial
dysfunction is regarded as the major pathological me-
chanism of Mn neurotoxicity, recent studies also suggest
a proinflammatory role for Mn, which involves the ac-
tivation of glial cells characterized by the release of
non-neuronal derived ROS, such as nitric oxide (NO),
cytokines, prostaglandins and H2O2 [71-73]. Mn potenti-
ates the release of several cytokines, including TNF-α,
IL-6, IL-1β from the activated glial cells, thereby activat-
ing various transcription factors including NF-kB, AP-1
and kinases including ERK, JNK, AKT, and PKC-α
[Reviewed in [74]].

The effect of Mn on astrocytic glutamate
transporters
Astrocytes are the site of early dysfunction and damage
in Mn neurotoxicity. Astrocytes are the most abundant
CNS cells (~50% by volume), and they perform nu-
merous essential functions for normal neuronal activity,
such as glutamate uptake, glutamine release, K+ and H+

buffering and volume regulation [36,75,76]. Astrocytes
accumulate up to 50-fold higher Mn concentrations
compared to neurons, thus serving as the main homeo-
static and storage site for this metal [75,77]. The intra-
cellular concentration of Mn in astrocytes is ~50-75 μM
where it is an essential cofactor for the astrocyte-specific
enzyme glutamine synthetase, which catalyzes the con-
version of glutamate to glutamine [78,79]. The excessive
accumulation of Mn in astrocytes mediates neurotoxicity
primarily by oxidative stress and impairment of glutam-
ate transporters [80,81]. Mn toxicity has been shown to
cause astrocytic alterations in primate models, and expo-
sure of pathophysiologically relevant Mn concentrations
in astrocytes in vitro causes time-and concentration-
dependent cell swelling secondary to oxidative stress
[82,83]. One of the proposed mechanisms of Mn-induced
neurotoxicity in astrocytes is alteration in glutamate
homeostasis due to impairment of glutamate transporters
[84]. Mn has also been shown to downregulate the
expression and function of glutamine transporters, re-
sulting in reduced glutamine uptake [85]. The impairment
of glutamate/glutamine transporters results in increa-
sed extracellular glutamate levels that elicit excitatory
neurotoxicity. In support of this mechanism, we and
others have shown that estrogen and selective estro-
gen receptor modulators protect astrocytes from Mn-
induced neurotoxicity by upregulating the expression
and function of glutamate transporters [86-88]. More-
over, Mn also activates selective cellular signaling path-
ways that mediate alterations in glutamate-glutamine
homeostasis. The decrease in glutamine uptake after the
activation of PKC-δ by Mn represents a typical exam-
ple of the involvement of signaling pathways in Mn-
induced neurotoxicity [89].
Although it is widely accepted that Mn impairs the ex-

pression and function of the two main glutamate trans-
porters (GLAST and GLT-1), its mechanism of action at
the transcriptional levels remains unknown. The in-
creased production of ROS and TNF-α by Mn is thought
to be the principal cause that leads to impairment in
glutamate transporter function. ROS inhibit astrocyte
glutamate uptake, and TNF-α decreases GLAST and
GLT-1 protein and mRNA levels [90-92]. Oxidative
stress also plays an important role in the regulation of
glutamate transporter function since the activity of glu-
tamate transporters is regulated by the redox state of re-
active cysteine residues, with a dramatic decrease in
activity once the reduced cysteine is oxidized [93]. Fur-
thermore, glutamate uptake by the recombinant glutam-
ate transporters EAAT1, EAAT2 and EAAT3 was found
to be inhibited by peroxynitrite and H2O2 and restored
upon treatment with the reducing agent, dithithreotol,
suggesting a role for oxidative stress in the regulation of
glutamate transporters activity [94]. TNF-α is a key
neuroinflammatory mediator of neurotoxicity and neu-
rodegeneration, and Mn increases the levels of this cyto-
kine [95]. Several studies also corroborate the reduction
in the expression and activity of glutamate transporters
by TNF-α, highlighting its role as a negative regulator of
the transporter [90,92]. NF-kB and MAPK signaling
pathways mediate TNF-α-induced reduction in GLT-1
expression, since the inhibition of these pathways re-
stores the decrease in TNF-α induced GLT-1 expression
and function [92].
Conclusion
Chronic excessive exposures to Mn represent a global
health concern as growing evidences suggests that Mn
accumulation in the brain may be a predisposing factor
for several neurodegenerative diseases. Studies over the
past several decades have provided invaluable insights
into the cause, effects and mechanisms of Mn-induced
neurotoxicity. The recent findings on the involvement of
glutamate transporters and cellular signaling pathways
in Mn-induced neurotoxicity provide not only new in-
sights into the molecular mechanisms of Mn-induced
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neurotoxicity, but also provide new therapeutic targets
in the development of novel drugs to attenuate the
symptoms associated with manganism, PD and other re-
lated neurodegenerative disorders.
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